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Wormhole Solutions in Superstring Theory
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The wormhole is discussed in 4-dimensional superstring theory; the corresponding
wormhole equation is deduced, from which both the analytical and numerical
solutions are given with three different cases of cosmological constant.

A wormhole is a Euclidean field configuration in some field theory
containing gravity, consisting of two asymptotically flat regions connected
by a tube, or throat. Wormholes were introduced in the 1950s by Wheeler
[1]. A specific example is the Schwarzschild bridge, which is a slice through
a black hole joining two asymptotic regions. By the end of the 1980s, topologi-
cal structures of space-time were being widely discussed in relation to the
study of quantum cosmology. Such concepts as 4-dimensional wormholes,
baby universes, and their effects on spacetime coupling constants have pro-
voked great interest among theoretical physicists [2–8]. Since this kind of
wormhole can join spaces with different topologies, it represents tiny quantum
fluctuations of space. From the mathematical point of view, the condition of
a wormhole existing on a 4-dimensional asymptotic flat manifold M4 is that
the Ricci tensor of M4 has negative eigenvalues somewhere on M4 [9]. In
the pure gravitation case, Hawking discussed wormholes in which two baby
universes are connected [2]. The wormhole with a stable Euclidean acrion
was first discovered by Giddings and Strominger [10] in a theory with a
spontaneously broken Abelian internal symmetry—the theory of a Goldstone
boson, or axion, minimally coupled to Einstein gravity. From the point of
view of physics, such wormhole solutions can also be used to study the
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dimensions of spacetime, quantum chaos [11–13], and the third quantization
problem of baby universes [8, 14–17]. Various wormhole solutions have been
discovered, e.g., wormholes in complex scalar fields both with [18] and
without [19] broken symmetry, wormholes in Yang–Mills gauge field [20–
22], Skyrme field [23], higher dimensional space-time [24–26], scalar field
[27], spinor field [28], and superstring theory [29]. Wormhole solutions with
topology S1 ^ S2 are discussed in ref. 30, and wormholes in scalar-tensor
gravitation theory are discussed in ref. 31. In refs. 32–35 the Wheeler–de
Witt equation is used to discuss the wormhole wavefunction. The Hilbert
space structures of wormholes are discussed in refs. 36–38.

In this paper, wormholes are studied in a 4-dimensional superstring
theory; the corresponding wormhole equations are deduced and solved, from
which both analytical and numerical solutions are given with three different
cases of cosmological constant.

Since the superstring model can be regarded as a general quantum gravity
theory, it is natural to consider the importance of the cosmological constant
in it. In general, a string field equation can be deduced from the conformal
s model; an effective action of a 4-dimensional superstring containing the
cosmological constant can be expressed as [10]

S 5 # d 4x !gebwF2R 2 (¹w)2 1 H 2 1
a8

8
(R2 2 F 2) 1 2LG (1)

where a8 is the coefficient of string tension, w is a scalar vacuum field, and
H is the modified Kalb–Ramond field intensity, which can be expressed as
a Yang–Mills–Chern–Simons 3-form v8r and a Chern–Simons 3-form v3L,
that is,

H 5 dB 2 v3r 1 v3L

v3r 5 tr(AF 2 1–3 A3)

v3L 5 tr(vR 2 1–3 v3)

The spherically symmetric metric is adopted for a 4-dimensional
superstring model

dS2 5 dt2 1 a2(t) dV2
3 (2)

Here dV2
3 is the metric of three-dimensional sphere. The axion field intensity

takes the form

H 5 h(t)ε (3)

with ε the volume element of S3. One has
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#
S3

ε 5 2p2a3(t) (4)

From the conservation equation of the axion field dH* 5 dH 5 0 one
can deduce

h(t) 5
n

f 2a3 (n P Z ) (5)

Here ∗ denotes Hodge couple. f is a parameter related to the string model.
dH 5 0 is equivalent to the cancellation condition of gauge anomaly and
gravity anomaly, tr R2 5 tr F 2, and thus one has the quantized axion field
on S3

#
S3

H 5
2pn2

f 2 (6)

provided that the scalar vacuum field w is independent of time, i.e.,

dw
dt

5 0 (7)

and from Eqs. (5) and (7), one obtains the Einstein field equation for scale
factor a(t),

31ȧ2

a2 2
1
a22 5 23ebw n2

f 2a6 2 2L (8)

which can be rewritten as

ȧ2 5 1 2
r 2

n

a4 2
2
3

La2 (9)

Here r 2
n 5 ebwn2 /f 2 is the parameter of the superstring wormhole.

Now let us solve Eq. (9) under three different cases of L.

1. L , 0

From Eq. (9), when ȧ 5 0 one has ä . 0, which means there exists a
minimum of a, which satisfies the relationship

amin , !4 ebwn2

f 2 (10)

In the limit when t → `, one obtains
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amin 5 ! 3
2.L.

(11)

One thus has the asymptotic solution of Eq. (9)

a(t) 5 ! 3
2.L.

sinh
t

!3/(2.L.)
(12)

Therefore, one obtains a wormhole solution which is a generalized De Sab-
bata–Sivaram wormhole.

2. L 5 0

Equation (9) becomes

ȧ2 5 1 2
r 2

n

a4 (13)

the solution of which is

t

!rn

5
1

!2
FFarccos

!rn

a
,

1

!2
G 2 !2EFarccos

!rn

a
,

1

!2
G

1
1

!rna
!a4 2 r 2

n (14)

where F and E are elliptic integrals of the first and the second kinds, respec-
tively. This is just the Giddings–Strominger wormhole. The corresponding
amin is

amin 5 !4 ebwn2

f 2 (15)

In the limit when t → `, one has the asymptotic solution

a(t) 5 t (16)

3. L . 0

In this case, there exists a critical value of L; when L . Lcrit, the
requirement for existence of amin cannot be satisfied. Therefore, the wormhole
solution does not exist. The Lcrit can be deduced from Eq. (9) as
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Fig. 1. Numerical results for the cosmological scale factor a(t) versus time t calculated from
Eq. (9). The unit of a(t) in the plot is assumed to be r 2

n, i.e., r 2
n 5 ebwn2/f 2 5 1. Curves

corresponding to three different values of L are indicated.
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Lcrit 5
1

!3(ebwn2/f 2)1/2
(17)

When 0 , L , Lcrit, from Eq. (9) one has ä . 0, so amin exists. One
thus has as the solution of Eq. (9)

t 5
b

(2L/3)1/2[a(b 2 g)]1/2 PFh1a2

r 2
n
2 ,

a 2 b
a

, Fg(b 2 a)
a(b 2 g)G

1/2G (18)

where

h(x) 5 arcsinFa(x 2 b)
x(a 2 b)G

1/2

(19)

P is the elliptic integral of the third kind, while a, b, g (a . b . 0 . g)
are three real roots of the equation

x3 2
1

(2L/3)r 2
n

x2 1
1

(2L/3)r 2
n

5 0 (20)

In this case

amin . !4 ebwn2

f 2 (21)

and there exists an amax of the radius of the wormhole throat.
Because there is a limit to the length of wormhole throat, the central

singularity of the wormhole solutions is avoided. The Pontryagin topological
number can be expressed as

dvcs 5
1

8p2 tr F 2 (22)

We give in Fig. 1 the numerical results for the cosmological scale factor
versus time t. The main features of the analytical solutions corresponding to
the three cases of the cosmological constant L are confirmed in the plot.
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